Ranks of Quadratic Twists of Elliptic Curves over Fq(t)

نویسندگان

  • Enrique Acosta
  • Martin Leslie
  • Douglas Ulmer
چکیده

Some notes on the analogy between number theory over Z and Fq[t] and an attempt to translate a paper of Gouvêa and Mazur on ranks of quadratic twists of elliptic curves over Q to elliptic curves over Fq(t).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disparity in Selmer ranks of quadratic twists of elliptic curves

We study the parity of 2-Selmer ranks in the family of quadratic twists of an arbitrary elliptic curve E over an arbitrary number field K. We prove that the fraction of twists (of a given elliptic curve over a fixed number field) having even 2-Selmer rank exists as a stable limit over the family of twists, and we compute this fraction as an explicit product of local factors. We give an example ...

متن کامل

Ranks of Elliptic Curves

This paper gives a general survey of ranks of elliptic curves over the field of rational numbers. The rank is a measure of the size of the set of rational points. The paper includes discussions of the Birch and SwinnertonDyer Conjecture, the Parity Conjecture, ranks in families of quadratic twists, and ways to search for elliptic curves of large rank.

متن کامل

Experimental Data for Goldfeld's Conjecture over Function Fields

This paper presents empirical evidence supporting Goldfeld’s conjecture on the average analytic rank of a family of quadratic twists of a fixed elliptic curve in the function field setting. In particular, we consider representatives of the four classes of non-isogenous elliptic curves over Fq(t) with (q, 6) = 1 possessing two places of multiplicative reduction and one place of additive reductio...

متن کامل

RANKS OF QUADRATIC TWISTS OF ELLIPTIC CURVES by

— We report on a large-scale project to investigate the ranks of elliptic curves in a quadratic twist family, focussing on the congruent number curve. Our methods to exclude candidate curves include 2-Selmer, 4-Selmer, and 8-Selmer tests, the use of the Guinand-Weil explicit formula, and even 3-descent in a couple of cases. We find that rank 6 quadratic twists are reasonably common (though stil...

متن کامل

Ranks of Twists of Elliptic Curves and Hilbert’s Tenth Problem

In this paper we investigate the 2-Selmer rank in families of quadratic twists of elliptic curves over arbitrary number fields. We give sufficient conditions on an elliptic curve so that it has twists of arbitrary 2-Selmer rank, and we give lower bounds for the number of twists (with bounded conductor) that have a given 2-Selmer rank. As a consequence, under appropriate hypotheses we can find m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008